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Abstract

The Value-at-Risk (VaR) and the Expected Shortfall (ES) are the two most popular risk mea-

sures in banking and insurance regulation. To bridge between the two regulatory risk measures, the

Probability Equivalent Level of VaR-ES (PELVE) was recently proposed to convert a level of VaR

to that of ES. It is straightforward to compute the value of PELVE for a given distribution model.

In this paper, we study the converse problem of PELVE calibration, that is, to find a distribution

model that yields a given PELVE, which may either be obtained from data or from expert opinion.

We discuss separately the cases when one-point, two-point, n-point and curve constraints are given.

In the most complicated case of a curve constraint, we convert the calibration problem to that of

an advanced differential equation. We apply the model calibration techniques to estimation and

simulation for datasets used in insurance. We further study some technical properties of PELVE

by offering a few new results on monotonicity and convergence.

Keywords: Value-at-Risk, Expected Shortfall, risk measures, heavy tails, advanced differential

equation.

1 Introduction

Value-at-Risk (VaR) and Expected Shortfall (ES, also known as TVaR and CVaR) are the most

widely used risk measures for regulation in finance and insurance. The former has gained its popularity

due to its simplistic approach toward risk as the risk quantile, and the second one is perceived to be use-

ful as a modification of VaR with more appealing properties, such as tail-sensitivity and subadditivity,

as studied in the seminal work of Artzner et al. (1999).
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In the Fundamental Review of the Trading Book (FRTB), the Basel Committee on Banking

Supervision (BCBS (2019)) proposed to replace VaR at 1% confidence with ES with a 2.5% confidence

interval for the internal model-based approach.1 The main reason, as mentioned in the FRTB, was

that ES can better capture tail risk; see Embrechts et al. (2018) for a concrete risk sharing model where

tail risk is captured by ES and ignored by VaR. On the other hand, VaR also has advantages that ES

does not have, such as elicitability (e.g., Gneiting (2011) and Kou and Peng (2016)) or backtesting

tractability (e.g., Acerbi and Székely (2014)), and the two risk measures admit different axiomatic

foundations (see Chambers (2009) and Wang and Zitikis (2021)). We refer to the reviews of Embrechts

et al. (2014) and Emmer et al. (2015) for general discussions on VaR and ES, and McNeil et al. (2015)

for a standard treatment on risk management including the use of VaR and ES. The technical contrasts

of the two risk measures and their co-existence in regulatory practice give rise to great interest from

both researchers and practitioners to explore the relationship between them.

To understand the balancing point of VaR and ES during the transition in the FRTB, Li and

Wang (2022) proposed the Probability Equivalent Level of VaR-ES (PELVE). The value of PELVE is

the multiplier to the tail probability when replacing VaR with ES such that the capital calculation stays

unchanged. More precisely, the PELVE ofX at level ε is the multiplier c such that EScε(X) = VaRε(X);

such c uniquely exists under mild conditions. For instance, if VaR1%(X) = ES2.5%(X) for a future

portfolio loss X, then PELVE of X at probability level 0.01 is the multiplier 2.5. In this case, replacing

VaR1% with ES2.5% in FRTB does not have much effect on the capital requirement for the bank bearing

the loss X. Instead, if ES2.5%(X) > VaR1%(X), then the bank has a larger capital requirement under

the new regulatory risk measure; this is often the case for financial assets and portfolios as shown by

the empirical studies in Li and Wang (2022). The PELVE enjoys many convenient properties, and it

has been extended in a few ways. In particular, Fiori and Gianin (2022) defined generalized PELVE

by replacing VaR and ES with another pair of monotone risk measures (ρ, ρ̃), and Barczy et al. (2022)

extended PELVE by replacing ES with a higher-order ES.

For a given distribution model or a data set, its PELVE can be computed or estimated in a

straightforward manner. As argued by Li and Wang (2022), the PELVE for a small ε may be seen

as a summarizing index measuring tail heaviness in a non-limit sense. As such, one may like to

generate models for a given PELVE, in a way similar to constructing models for other given statistical

information; see e.g., Embrechts et al. (2002, 2016) for constructing multivariate models with a given

correlation or tail-dependence matrix. Such statistical information may be obtained either from data

or from expert opinion, but there is no a priori guarantee that a corresponding model exists. Since

PELVE involves a parameter ε ∈ (0, 1), its information is represented by a curve. The calibration

problem, that is, to find a distribution model for given PELVE values or a given PELVE curve, turns

1In this paper, we use the “small α” convention for VaR and ES. Hence, “VaR at 1% confidence” and “ES at 2.5%
confidence” correspond to VaR99% and ES97.5% in BCBS (2019), respectively.
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out to be highly non-trivial, and it is the main objective of the current paper.

From now on, suppose that we receive some information on the PELVE of a certain random

loss from an expert opinion, and we aim to build a distribution model consistent with the supplied

information. Since PELVE is location-scale invariant, such a distribution, if it exists, is not unique.

The calibration problem is trivial if we are supplied with only one point on the PELVE curve.

As the PELVE curve of the generalized Pareto distribution is a constant when the PELVE is well

defined, we can use the generalized Pareto distribution to match the given PELVE value, which has

a tail index implied from the expert opinion. The calibration problem becomes more involved if we

are supplied with two points on the PELVE curve, because the value of the PELVE at two different

probability levels interact with each other. The situation becomes more complicated as the number of

points increases, and we further turn to the problem of calibration from a fully specified PELVE curve.

Calibrating distribution from the PELVE curve can be reformulated as solving for a function f via

the integral equation
∫ y

0
f (s) ds = yf (z (y) y), where the curve z is computed from the PELVE curve.

This integral equation can be further converted to an advanced differential equation (see Bellman and

Cooke (1963)). For the case that z is a constant curve, we can explicitly obtain all solutions for f .

We find other distributions that also have constant PELVE curves other than the simple ones with a

Pareto or exponential distribution. As a consequence, a PELVE curve does not characterize a unique

location-scale family of distributions; this provides a negative answer to a question posed by Li and

Wang (2022, Section 7, Question (iv)). For general function z, we develop a numerical method to

compute f .

The calibrated distribution can be used to estimate the value of other risk measures such as VaR

and ES at different levels. We illustrate by an empirical example that two points of PELVE give a quite

good summary of the tail distribution of risk. Daily log-losses (negative log-returns) of AAPL from

Yahoo Finance are collected for the period from January 3, 2012 to December 31, 2021 within total

of 2518 observations. We calculate the empirical PELVE at levels 0.01 and 0.05 using the empirical

PELVE estimator provided by Li and Wang (2022, Section 5) with a moving window of 500 trading

days. For each pair of two points of PELVE at levels 0.01 and 0.05, we produce a quantile curve

from the two empirical PELVE points by our calibration model in Section 3.2, which is scaled such

that VaR0.01 and VaR0.05 are equal to their empirical values.2 Figure 1 presents the empirical and

calibrated quantile curves on December 31, 2021 using 500 trading days prior to that date. The two

quantile curves are close to each other, with our calibrated curve being more smooth. We also report

the values of ES0.025 of the calibrated distribution, which we call the calibrated ES0.025, and compare it

with empirical ES0.025. The left panel of Figure 2 shows the curves of empirical and calibrated ES0.025.

In the right panel of Figure 2, we create a scatter plot using empirical and calibrated ES0.025. Both

2Recall that PELVE is location-scale free, and hence we need to pick two free parameters to specify a distribution
calibrated from PELVE.
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figures show that the empirical and calibrated ES0.025 curves are quite close.

Figure 1: Empirical VaR and calibrated VaR
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Figure 2: Empirical ES0.05 and calibrated ES0.05
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To further enrich the theory of PELVE, we study a few technical properties of PELVE, such as

monotonicity and convergence as the probability level goes to 0. A decreasing PELVE indicates a

relatively larger impact of ES in risk assessment than VaR moving towards the tail. As we will see,

while for the most known parametric distributions the PELVE is decreasing, there exist some examples

at some risk levels it is not decreasing. This means that for those examples VaR becomes a stricter

risk measure when moving towards the tail. To obtain conditions for monotonicity, we define the dual

PELVE by moving the multiplier c from the ES side to the VaR side. PELVE can be seen as a functional

measure of tail heaviness in the sense that a heavier-tailed distribution has a higher PELVE curve (Li

and Wang (2022, Theorem 1)). The hazard rate, on the other hand, is another functional measure of

tail heaviness. We show that the PELVE is decreasing (increasing) if the inverse of the hazard rate
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is convex (concave). Monotonicity also leads to conditions for the PELVE to have a limit at the tail,

which from the risk management perspective, identifies the ultimate relative positions of ES and VaR

in the tail region. From a mathematical perspective, the limit of PELVE at 0 allows us to extend the

domain of PELVE to include 0 as a measure of tail heaviness.

The rest of this paper is organized as follows. Section 2 introduces the background and examples

of the PELVE. In Section 3 we calibrate a distribution from finitely many points in the PELVE curve.

Section 4 calibrates the distribution from given PELVE curves, where we give a class of explicit solutions

for constant PELVE functions and numerical solutions for general PELVE functions. In Section 5, we

study the monotonicity and convergence of the PELVE. Section 6 presents two examples of the model

calibration techniques applied to datasets used in insurance. A conclusion is given in Section 7. Some

technical proofs of results in Sections 3, 4 and 5 are provided in the Appendices.

2 Definitions and background

Let us consider an atomless probability space (Ω,F ,P), where F is the set of the measurable sets

and P is the probability measure. Let L1 be the set of integrable random variables, i.e., L1 = {X :

E[|X|] < ∞}, where E is the expectation with respect to P.

We first define VaR and ES in L1, the two most popular risk measures. The VaR and at probability

level p ∈ (0, 1) is defined as

VaRp(X) = inf{x ∈ R : P(X ⩽ x) ⩾ 1− p} = F−1(1− p), X ∈ L1, (1)

where F is the distribution of X. The ES at probability level p ∈ [0, 1) is defined as

ESp(X) =
1

p

∫ p

0

VaRq(X)dq, X ∈ L1.

Note that we use the “small α” convention for VaR and ES, which is different from Liu and Wang

(2021). Let VaR0(X) = ES0(X) = ess-sup(X) and VaR1(X) = ess-inf(X). We have that ES1(X) is

the mean of X. We will also call p 7→ VaRp(X) the quantile function of X, keeping in mind that in

our convention this function is decreasing.3

For ε ∈ (0, 1), the PELVE at level ε, proposed by Li and Wang (2022), is defined as

ΠX(ε) = inf {c ∈ [1, 1/ε] : EScε(X) ⩽ VaRε(X)} , X ∈ L1,

where inf(∅) = ∞. Li and Wang (2022) used Πε(X) for our ΠX(ε), and our choice of notation is due

3Throughout the paper, all terms like “increasing” and “decreasing” are in the non-strict sense.
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to the fact that the curve ε → ΠX(ε) is the main quantity of interest in this paper.

The PELVE ofX is finite if and only if VaRε(X) ⩾ E[X]. The value of the PELVE is the multiplier

c such that EScε(X) = VaRε(X). If VaRp(X) is not a constant for p ∈ (0, ε], then the PELVE is the

unique solution for the multiplier. By Theorem 1 in Li and Wang (2022), the PELVE is location-scale

invariant. The distribution with a heavy tail will have a higher PELVE value.

If X is a normal distributed random variable and ε = 1%, we have ΠX(ε) ≈ 2.5. It means that

ES2.5%(X) ≈ VaR1%(X). That is, the replacement suggested by BCBS is fair for normally distributed

risks. In other words, a higher PELVE will result in a higher capital requirement after the replacement.

In this paper, we are generally interested in the question of which distributions have a specified

or partially specified PELVE curve. We first look at a few simple examples.

Example 1 (Constant PELVE). We first list some distributions that have constant PELVE curves.

From the definition of the PELVE, we know that the PELVE should be larger than 1. As we can

see from Table 1, the PELVE for the generalized Pareto distribution takes values on (1,∞). For

X ∼ GPD(ξ), we have 1 < ΠX(ε) < e when ξ < 0, ΠX(ε) = e when ξ = 0 and ΠX(ε) > e when

ξ > 0. Furthermore, if X follows the point-mass distribution δc or the Bernoulli distribution, we have

ΠX(ε) = 1.

Table 1: Example of constant PELVE

Distribution Distribution or probability function of X ΠX(ε)

δc P(X = c) = 1 ΠX(ε) = 1 for ε ∈ (0, 1)

B(1, p) P(X = 1) = p and P(X = 0) = 1− p ΠX(ε) = 1 for ε ∈ (0, p)

U(0, 1) F (t) = t for t ∈ (0, 1)
ΠX(ε) = 2 for
0 < ε < 1/2

EXP(λ) F (t) = 1− exp(−λt), λ > 0
ΠX(ε) = e for
0 < ε < 1/e

GPD(ξ)1 F (x) =

{
1− (1 + ξx)

− 1
ξ ξ ̸= 0

1− exp(−x) ξ = 0

ΠX(ε) = (1− ξ)−
1
ξ for

0 < ε < (1− ξ)
1
ξ

1 The distribution GPD(ξ) is called the standard generalized Pareto distribution. As E[X] < ∞ when ξ < 1,
the PELVE exists only when ξ < 1. The support of GPD(ξ) is [0,∞) when ξ > 0 and [0,− 1

ξ
] when ξ < 0.

When ξ = 0, the GPD(ξ) is exactly exponential distribution with λ = 1/σ. There is a three-parameter
GPD(µ, σ, ξ), which is a location-scale transform of standard GPD. Therefore, GPD(µ, σ, ξ) has the same
PELVE as GPD(ξ).

Example 2. Here we present some non-constant PELVE examples. We write t(v) for the t-distribution

with parameter (0, 1, v), and LN(σ) for the log-normal distribution with parameter (0, σ2). As we can

see, for normal distribution and t-distribution, the PELVE curve is decreasing as ε increasing. The

monotonicity of the PELVE of the lognormal distribution depends on the value of σ. The monotonicity
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Figure 3: PELVE for normal distribution, t-distribution and lognormal distribution
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of the PELVE will be further discussed in Section 5. For more PELVE examples, see Li and Wang

(2022).

3 Calibration from finite-point constraints

In this section, we discuss the calibration problem when some points of the PELVE are given. We

will focus on the case where one point or two points on the PELVE curve are specified, for which we

can explicitly construct a corresponding quantile function.

We first note that the calibrated distribution is not unique. For example, if we are given ΠX(0.01) =

2.5, we can assume the distribution of X is the Normal distribution or the generalized Pareto distri-

bution with tail parameter ξ satisfying (1 − ξ)−1/ξ = 2.5 from Table 3. Therefore, the distributions

obtained in our results are only some possible choices, which we choose to have a generalized Pareto

tail, as Pareto tails are standard in risk management applications.

3.1 Calibration from a one-point constraint

Based on Table 1, we can calibrate the distribution for X from one given PELVE point (ε1, c1)

such that ΠX(ε1) = c1. A simple idea is to take the generalized Pareto distribution when c1 > 1 and

δc when c1 = 1. We summarize the idea in the following Proposition.

Proposition 1. Let ε1 ∈ (0, 1) and c1 ∈ [1,∞) such that c1ε1 ⩽ 1. If c1 > 1, let ξ ∈ R such that

(1− ξ)−
1
ξ = c1. Then, X ∼ GPD(ξ) has ΠX(ε1) = c1. If c1 = 1, then X = k for some constant k ∈ R

has ΠX(ε1) = c1.

The proof can be directly derived from Table 1 and it is omitted. By Proposition 1, if we have

the value of PELVE at point ε1, we can find a distribution of X which has the same PELVE value at

ε1. If we also have the value of VaR at ε1, we can determine the scale parameter (σ) for the GPD

distribution or the value of k to match the value of VaR. For Table 1, we can see that the calibrated

generalized Pareto distribution can also serve as a solution for a more prudent condition ΠX(ε) ⩾ c1

when ε ∈ (0, ε1).
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3.2 Calibration from a two-point constraint

The calibration problem would be much more difficult when we are given two points of the PELVE

curve. Given two points (ε1, c1) and (ε2, c2) such that ε1 < ε2, we want to find a distribution for

X ∈ L1 such that ΠX(ε1) = c1 and ΠX(ε2) = c2. Nevertheless, the choices of (ε1, c1) and (ε2, c2) are

not arbitrary. First, we need 1 ⩽ c1 ⩽ 1/ε1 and 1 ⩽ c2 ⩽ 1/ε2 by the definition of the PELVE. Then,

we will show that the value of c2 will be restricted if (ε1, c1) and ε2 are given.

Lemma 1. For any X ∈ L1, let ε1, ε2 ∈ (0, 1) be such that E[X] ⩽ VaRε2(X) and ε1 < ε2. Then, we

have ε1ΠX(ε1) ⩽ ε2ΠX(ε2).

By Lemma 1, for given ε1, ε2 and c1, the value of c2 is bounded below by both 1 and c1ε1/ε2. We

also note that if c2 = 1, then p 7→ VaRp(X) is constant on (0, ε2), which implies c1 = 1. In Appendix

A, Proposition 6 shows that the above lower bound is achieved if and only if VaRε1(X) = VaRε2(X).

From the definition of the PELVE and Lemma 1, for ε1 < ε2, the possible choices of (ε1, c1) and

(ε2, c2) should satisfy 1 ⩽ c1 ⩽ 1/ε1, 1 ⩽ c2 ⩽ 1/ε2 and c1ε1 ⩽ c2ε2. We denote by ∆ the admissible

set for (ε1, c1, ε2, c2), that is,

∆ = {(ε1, c1, ε2, c2) ∈ ((0, 1)× [1,∞))2 : ε1 < ε2, c1ε1 ⩽ 1, c2ε2 ⩽ 1, c1ε1 ⩽ c2ε2}.

We illustrate the possible region of (c1, c2) with given ε1 and ε2 in Figure 4. We divide the region into

5 cases and calibrate the distribution for each case.

Figure 4: Admissible region of (c1, c2)
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The calibration process is to construct a continuous and decreasing quantile function that can
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satisfy two equivalent conditions between VaR and ES, which are

ESc1ε1(X) = VaRε1(X) and ESc2ε2(X) = VaRε2(X). (2)

As we can see, only the values of VaRε(X) for ε ∈ (0, c2ε2] matters for the equivalent condition (2).

Therefore, we focus on constructing VaRε(X) for ε ∈ (0, c2ε2]. In addition, we want a continuous

calibrated quantile function.

The case c1 = 1 or c2 = 1 is special, which means that VaRε(X) is a constant on the tail part. If

c1 > 1, we can set the tail distribution as the generalized Pareto distribution from Table 3 such that

ΠX(ε1) = c1.

For z = (ε1, c1, ε2, c2) ∈ ∆, we will construct a class of functions, denoted by Gz, in five different

cases according to Figure 4. The function t 7→ Gz(t) will be our desired quantile function. If c1 = 1, let

k̂, k̃ ∈ R be any two constants satisfying k̃ < k̂. If c1 > 1, let ξ ∈ (−∞, 1) be such that (1−ξ)−1/ξ = c1,

k(ε) =


1

ξ
(ε−ξ − 1), ξ ̸= 0,

− log(ε), ξ = 0,

and k =
∫ ε1
0

k(ε)dε. We first claim that the function Gz can be any arbitrary continuous and decreasing

function on [c2ε2, 1) since the values of VaRt(X) for t ∈ [c2ε2, 1) do not affect its PELVE at ε1 and ε2.

The value of Gz on (0, c2ε2] is given by

(i) Case 1, c2 = 1 (which implies c1 = 1): Gz(ε) = k̂;

(ii) Case 2, c1 = 1 and 1 < c2 ⩽ 1/ε2:

Gz(ε) =


k̂, ε ∈ (0, ε1),

a1ε+ b1, ε ∈ [ε1, ε2),

a2ε+ b2, ε ∈ [ε2, c2ε2],

where



a1 =
k̃ − k̂

ε2 − ε1
,

b1 = k̂ − a1ε1,

a2 =
(k̃ − k̂)(ε1 + ε2)

(c2ε2 − ε2)2
,

b2 = k̃ − a2ε2;

(iii) Case 3, ε2/ε1 < c1 ⩽ 1/ε1 and c2 = c1ε1/ε2:

Gz(ε) =


k(ε), ε ∈ (0, ε1),

k(ε1), ε ∈ [ε1, ε2),

aε+ b, ε ∈ [ε2, c2ε2],

where


a =

2(k(ε1)ε1 − k)

(c2ε2 − ε2)2
,

b = k(ε1)− aε2;

9



(iv) Case 4, 1 < c1 ⩽ ε2/ε1 and 1 < c2 ⩽ 1/ε2:

Gz(ε) =


k(ε), ε ∈ (0, c1ε1),

a1ε+ b1, ε ∈ [c1ε1, ε2),

a2ε+ b2, ε ∈ [ε2, c2ε2],

where



a1 = −(c1ε1)
−ξ−1,

b1 = k(c1ε1)− a1c1ε1,

a2 =
a1(ε

2
2 − (c1ε1)

2) + 2(k(c1ε1)− k(ε1))c1ε1
(c2ε2 − ε2)2

,

b2 = a1ε2 + b1 − a2ε2;

(v) Case 5, ε2/ε1 < c1 ⩽ 1/ε1 and c1ε1/ε2 < c2 ⩽ 1/ε2:

Gz(ε) =



k(ε), ε ∈ (0, ε1),

a1ε+ b1, ε ∈ [ε1, ε2),

a1ε2 + b1, ε ∈ [ε2, c1ε1),

a2ε+ b2, ε ∈ [c1ε1, c2ε2],

where



a1 =
k(ε1)ε1 − k

(ε2 − ε1)(c1ε1 − 1/2(ε1 + ε2))
,

b1 = k(ε1)− a1ε1,

a2 =
2c1ε1(a1ε2 + b1 − k(ε1))

(c1ε1 − c2ε2)2
,

b2 = a1ε2 + b1 − a2c1ε1.

An illustration of the functions Gz on [0, c2ε2] in Case 2 to Case 5 is presented in Figure 5, and

we omit Case 1 in which Gz is a constant function on [0, c2ε2].

Theorem 1. For z = (ε1, c1, ε2, c2) ∈ ∆, the random variable X with a continuous quantile function

given by t 7→ VaRt(X) = Gz(t) satisfies ΠX(ε1) = c1 and ΠX(ε2) = c2.

Remark 1. As we can see from Figure 5, some parts of the calibrated quantile function may be flat,

corresponding to the existence of atoms in the distribution. This may be considered as undesirable

from a modeling perspective, and indeed it is forced by the boundary cases of (ε1, c1, ε2, c2) ∈ ∆ in

Figure 4. The flat parts in Cases 1 to 3 are necessary due to Propositions 6. On the other hand,

the flat part in Case 5 can be replaced by a strictly decreasing function. For instance, we can replace

the flat part with a strictly decreasing linear segment as long as c2 satisfies the bounds shown in

Propositions 7 in Appendix A. Another way is to set VaRε(X) as k(ε) for ε ∈ (0, c1ε1) if c2 ⩽(
c1ε1(ε

−ξ
1 − (c1ε1)

−ξ)
)
/
(
ε−ξ
2 − (c1ε1)

−ξ
)
, and this choice is applied in the numerical examples in the

Introduction and Section 6. The interested reader can see Propositions 6 and 7 in Appendix A, where

we show that a strictly decreasing quantile function cannot attain the boundary cases (ε1, c1, ε2, c2),

and hence the flat parts are necessary to include and unify these cases.

We can easily get the distribution of X from VaRε(X). As the PELVE is scale-location invariant,

we can scale or move the distribution we get to match more information. For example, if VaRε1(X)

and VaRε2(X) are given, we can choose two constants λ and µ such that λX +µ matches the specified

VaR values. In a similar spirit, the calibration problem can be extended to calibrate the distributions

10



Figure 5: An illustration of Gz in cases 2 to 5
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(d) The function Gz in Case 5

from some given ES and VaR values. The two points calibration problem can be regarded as given

two ES and VaR values. Calibrating from only ES or VaR would be easy. However, the choices of ES

values will also be limited by VaR values if we consider them at the same time, which is the same as

the choice of c1, c2 as we discussed in this section.

3.3 Calibration from an n-point constraint

As we see above, the PELVE calibration problem is quite technical even when only two points on

the PELVE curve are given. By extending the constraint to more than two points, the problem will in

general become much more complicated. We briefly discuss this problem in this section.

For the n-point constraint problem, we first need to figure out the admissible set for (εi, ci)i=1,...,n.

By Lemma 1, the admissible set for the n-point calibration problem is a subset of

{(εi, ci)i=1,...,n : 0 < ε1 < · · · < εn < 1, c1, . . . , cn ⩾ 1, 0 < c1ε1 ⩽ . . . ⩽ cnεn ⩽ 1}.

11



However, it is not clear whether each point in the above set is admissible. There are other constraints

for the admissible points such as Proposition 7. Once the admissible set is determined, we need to

divide the admissible set according to the position of εi and ciεi, i = 1, . . . , n. Furthermore, the case

ci = 1 and ciεi = cjεj for i, j = 1, . . . , n need special attention as Cases 1, 2 and 3 in the two-point

constraint problem. For instance, in the three-point constraint problem, we need to discuss over 10

separate cases.

Below, we only discuss some special cases of (εi, ci)i=1,...,n. First, if cn = 1, then the problem

becomes trivial, as the calibrated quantile functions satisfy VaRt(X) = k̂ for some k̂ ∈ R in [0, cnεn].

For the case ckεk > εk ⩾ ck−1εk−1 for k = 3, . . . , n, we can set the calibrated quantile function in

(0, cnεn] recursively. This is because such a configuration of (εi, ci)i=1,...,n allows for separation of the

constraints, in the sense that we can adjust the values of VaRt for t ∈ [εk, ckεk] to match PELVE at

εk without disturbing VaRt for t ⩽ ck−1εk−1. Let VaRk
t (X) be the calibrated quantile function from

the k-point constraint problem for k = 2, . . . , n where VaR2
t (X) follows Theorem 1. The calibrated

quantile function for the n-point constraint problem is

VaRk
t (X) =


VaRk−1

t (X), t ∈ [0, ck−1εk−1],

ak−1t+ bk−1, t ∈ (ck−1εk−1, εk],

akt+ bk, t ∈ (εk, ckεk],

where


ak =

ak−1(ε
2
k + c2k−1ε

2
k−1 − 2ck−1ε

2
k−1)

(ckεk − εk)2
,

bk = ak−1εk + bk−1 − akεk.

In particular, for n = 3, and assuming c3ε3 > ε3 ⩾ c2ε2, the calibrated function is given by, with

z = (ε1, c1ε1, ε2, c2ε2) ∈ ∆,

VaRt(X) =


Gz(t), t ∈ [0, c2ε2],

a2t+ b2, t ∈ (c2ε2, ε3],

a3t+ b3, t ∈ (ε3, c3ε3],

where



a2 =
a1(ε

2
2 − (c1ε1)

2) + 2(k(c1ε1)− k(ε1))c1ε1
(c2ε2 − ε2)2

,

b2 = −(c1ε1)
−ξ−1(ε2 − c1ε1)− k(c1ε1)

a3 =
a2(ε

2
3 + c22ε

2
2 − 2c2ε

2
2)

(c3ε3 − ε3)2
,

b3 = a2ε3 + b2 − a3ε3.

In Figure 6, we show the calibrated quantile function for the case (ε1, ε2, ε3) = (0.005, 0.025, 0.1) and

(c1, c2, c3) = (4, 3, 2.5). Note that the condition c2ε2 ⩽ ε3 is needed here.

Although we cannot solve the n-point constraint problem in general, we can instead discuss cali-

bration from a given PELVE curve, which is the problem addressed in the next section.
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Figure 6: Calibrated quantile function when (ε1, ε2, ε3) = (0.005, 0.025, 0.1) and (c1, c2, c3) = (4, 3, 2.5)
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4 Calibration from a curve constraint

By the location-scale invariance properties of the PELVE, we know that the solution cannot be

unique. Conversely, it would be interesting to ask whether all solutions can be linearly transformed

from a particular solution; that is, for a given function ε 7→ Π(ε), whether the set {X ∈ X : ΠX = Π} is

a location-scale class. This question, as well as identifying X satisfying ΠX = Π, is the main objective

of this section.

4.1 PELVE and dual PELVE

First, we note that calibrated distributions from an entire PELVE curve ε 7→ Π(ε) on (0, 1) would

be unnatural, because the existence of the PELVE requires E[X] ⩽ VaRε(X) which may not hold for ε

not very small. Thus, the PELVE curve ΠX does not behave well on some parts of (0, 1). To address

this issue, we introduce a new notion called the dual PELVE and an integral equation which can help

us to calibrate the distribution by differential equations. The dual PELVE is defined by moving the

multiplier in PELVE from the ES side to the VaR side.

Definition 1. For X ∈ L1, the dual PELVE function of X at level ε ∈ (0, 1] is defined as

πX(ε) = inf
{
d ⩾ 1 : ESε(X) ⩽ VaRε/d(X)

}
, ε ∈ (0, 1].

The existence and uniqueness of πX(ε) can be shown in the same way as the existence and

uniqueness of the PELVE. There are advantages and disadvantages of working with both notions; see

Li and Wang (2022, Remark 2). In our context, the main advantage of using the dual PELVE is that

πX(ε) is finite for all ε ∈ (0, 1], while ΠX(ε) is finite only when E[X] ⩽ VaRε(X).

Note that for X with a discontinuous quantile function, there may not exist d such that ESε(X) =
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VaRε/d(X). In order to guarantee the above equivalence, we make the following assumption for the

quantile function, represented by general function f .

Assumption 1. The function f is strictly decreasing and continuous, and
∫ 1

0
|f(s)|ds < ∞.

Let X be the set of X ∈ L1 with quantile function satisfying Assumption 1. The requirement that

the quantile function of X is continuous and strictly decreasing is equivalent to that the distribution

function is continuous and strictly increasing in (ess-inf(X), ess-sup(X)); see Embrechts and Hofert

(2013). We limit our discussion to random variables X ∈ X , which include the most common models

in risk management.

Proposition 2. For X with quantile function satisfying Assumption 1 and ε ∈ (0, 1), we have

ΠX(ε/πX(ε)) = πX(ε) and πX(ΠX(ε)ε) = ΠX(ε) if E[X] ⩽ VaRε(X). Furthermore, πX(ε) is the

unique solution d ⩾ 1 to the equation

ESε(X) = VaRε/d(X).

It is straightforward to verify Proposition 2. By Proposition 2, we can calibrate the distribution

functions from dual PELVE instead of PELVE, and the calibrated distributions should satisfy the

equation ESε(X) = VaRε/d(X).

4.2 An integral equation associated with dual PELVE

In order to calibrate distributions from the dual PELVE, we can equivalently focus on quantile

functions. Let us consider X ∈ X and f(s) = VaRs(X). Then, solving πX(ε) is the same as solving z

in following equation: ∫ y

0

f (s) ds = yf (zy) (3)

for y = ε. The solution is z = 1/πX(y). As f(s) = VaRs(X), f satisfies Assumption 1. Denote by C

the set of all f satisfying Assumption 1. For any f ∈ C, the existence of the solution z is guaranteed by

the mean-value theorem and its uniqueness is obvious. For y ∈ (0, 1], let zf (y) be the solution to (3)

associated with f . Clearly, zf (y) ⩽ 1 and y 7→ yzf (y) is strictly increasing. This is similar to Lemma

1 for the two-point case. Obviously, zf (y) is also location-scale invariant under linear transformation

on f ∈ C. That is, zλf+b = zf for λ > 0 and b ∈ R. Furthermore, zf is continuous as f is continuous

and strictly decreasing. The next proposition is a simple connection between zf and πX .

Proposition 3. For any f satisfying Assumption 1, X = f(U) for some U ∼ U(0, 1) has the dual

PELVE πX(y) = 1/zf (y) for all y ∈ (0, 1) where zf is solution to (3). For X with quantile function

satisfying Assumption 1, there exists f satisfying Assumption 1 such that X = f(U) for some U ∼

U(0, 1) and the solution to (3) is zf (y) = 1/πX(y) for all y ∈ (0, 1).
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Proof. For any f satisfying Assumption 1, let F (x) = 1 − f−1(x). Hence, F is a continuous and

strictly increasing distribution function and F−1(s) = f(1 − s) for s ∈ (0, 1). Let U ∼ U(0, 1) and

X = F−1(U) = f(1− U). Then X ∈ X and X ∼ F . As F−1(1− s) = f(s), we have πX(y) = 1/zf (y).

Take U ′ = 1− U . We have X = f(U ′) and U ′ ∼ U(0, 1).

For X ∈ X , let f(s) = VaRs(X). Then, we have zf (y) = 1/πX(y) for y ∈ (0, 1]. Furthermore, we

have F−1(s) = f(1− s). Therefore, there exists U ∼ U(0, 1) such that X = f(1−U). Let U ′ = 1−U .

Then, we have X = f(U ′) and U ′ ∼ U(0, 1).

Proposition 3 allows us to study z instead of π for the calibration problem. The integral equation

(3) can be very helpful in characterizing the distribution from the dual PELVE.

Some examples of πX and zf are listed in Table 2, which is corresponding to the PELVE presented

in Table 1.

Table 2: Example of πX and zf

X πX(ε) f zf

U(0, 1) πX(ε) = 2 f(x) = 1− x zf (y) = 1/2

Exp(λ) πX(ε) = e f(x) = − log(x)/λ zf (y) = 1/e

GPD(ξ) πX(ε) = (1− ξ)−
1
ξ f(x) =

{
1/ξ

(
x−ξ − 1

)
ξ ̸= 0

− log(x) ξ = 0
zf = (1− ξ)

1
ξ

For a given dual PELVE curve π, we find the solution to the integral equation by the following

steps.

1. Let z(y) = 1
π(y) for all y ∈ (0, 1].

2. Find f ∈ C that satisfies
∫ y

0
f(s)ds = yf (z(y)y) for all y ∈ (0, 1].

3. By Proposition 3, X = f(U) for some U ∼ U(0, 1) will have the given dual PELVE π.

Therefore, we will focus on characterizing f from a given z : (0, 1] → (0, 1] below. Generally, it is

hard to characterize f explicitly. We first formulate the problem as an advanced differential equation,

which helps us to find solutions.

4.3 Advanced differential equations

In this section, we show that the main objective (3) can be represented by a differential equation.

The use of differential equations in computing risk measures has not been actively developed. The only

paper we know is Balbás et al. (2020) which addresses a different problem.
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Let us recall the integral equation (3) from Section 4.2. For a function f ∈ C, we solve the function

zf : (0, 1) → R from (3). We represent (3) by an advanced differential equation using the following

steps.

1. Let ωf (y) = yzf (y). It is easy to see that zf (y) ⩽ 1. Hence, ωf is strictly increasing and

continuous on (0, 1] and ωf (y) ⩽ y.

2. Let uf be the inverse function of ωf . We have that uf : (0, zf (1)] 7→ (0, 1] is a continuous and

strictly increasing function and uf (w) ⩾ w.

3. Replacing y with uf (w) in (3), we have f(w) =
∫ uf (w)

0
f(w)ds/uf (w).

4. Assume uf is continuously differentiable. It is clear that f is continuously differentiable on

(0, zf (1)). Hence, we can represent (3) by the following advanced differential equation

f ′ (w) +
u′
f (w)

uf (w)
(f (w)− f (uf (w))) = 0.

For a given function z : (0, 1] → R, let u = ω−1 such that ω(y) = yz(y) for y ∈ (0, 1]. Then, we

solve the function f by the following differential equation

f ′ (w) +
u′ (w)

u (w)
f (w)− u′ (w)

u (w)
f (u (w)) = 0. (4)

If z = 1/πX for some X ∈ X , then u is a strictly increasing and continuous function such that

u (w) ⩾ w. Furthermore, if z is continuously differentiable, then we can characterize all X ∈ X with

πX = 1/z by (4). As u′ (w) /u (w) ⩾ 0 and u(w) ⩾ w, (4) is a linear advanced differential equation

which is well studied in the literature. In Berezansky and Braverman (2011), it is shown that there

exists a non-oscillatory solution for (4).

4.4 The constant PELVE curve

We first solve the case that z(y) = c for all y ∈ (0, 1] and some constant c ∈ (0, 1). As we can

see from Table 2, the power function and logarithm function have constant zf . If f(x) = λxα + b for

α > −1, we can see that (α + 1)−1/α = c. In this section, we can characterize all the other solutions

which can not be expressed as a linear transformation of the power function. That is, we will see that

the set

{f ∈ C : zf (y) = z(y), y ∈ (0, 1]}

is not a location-scale class. Hence, we can answer the question at the beginning of the section; that

is, in the case the PELVE is a constant, the set {X ∈ X : ΠX = c} is not a location-scale class.
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Theorem 2. For c ∈ (0, 1), any X with quantile function satisfying Assumption 1 and πX(ε) = 1/c

for ε ∈ (0, 1) can be written as X = f(U) for some U ∼ U(0, 1) and f satisfying Assumption 1.

Furthermore, such f has the form

f (y) = C1 + C2y
α +O

(
yζ
)
,

where α is the root of (α + 1)−1/α = c, ζ > max{0, α}, C1, C2 ∈ R, C2α < 0 and O(yζ) is a function

such that lim supy→0 O(yζ)/yζ is a constant.

The proof of Theorem 2 is provided in Appendix B. As we can see, Theorem 2 characterizes all

X ∈ X such that πX(ε) = 1/c. If c ∈ (0, 1/e), α is negative. As ζ > 0, we can see that X = f(U)

is regularly varying of index α. Hence, one can then consider the Pareto distribution with survival

function S(x) = xα as a representative solution for the tail behavior. An open question is that, in the

general case that the PELVE is not necessarily constant, whether all the solutions behave similarly

regarding their tail behavior.

Another interesting implication of the theorem and its proof is that one can give a non-trivial

solution for z is a constant.

Example 3. For c ∈ (0, 1), let (θ, η) be a solution of

c log c = −
η exp(− η

tan(η) )
sin(η) ,

θ = − η
tan(η) .

Then, the function f , given by

f(y) = C1 + C2y
α + C3y

ζ sin(−σ log(y)), 0 < y < 1, (5)

satisfies
∫ y

0
f(s)ds = yf(cy) and Assumption 1, where α solves (α + 1)−1/α = c, ζ = θ/ log c − 1,

σ = −η/ log c, C2 is a constant such that C2α < 0 and 0 < C3 < −C2α/(ζ + |σ|).

If we take C3 = 0, we get the simplest power function for z(x) = c. If C3 ̸= 0, the solution (5) is

not a linear transformation of the power function solution.

Let us look at the example where π(ε) = 2 for all ε ∈ (0, 1], which means z(y) = 1/2 for y ∈ (0, 1].

As we have seen in Table 2, f(y) = 1 − y can be a solution that leads to X ∼ U(0, 1). Furthermore,

according to Example 3, we can have another solution

f(y) = 1− yα + Cyζ sin(−σ log(y)),

where α = 1, C = 0.05096, ζ = 4.0184 and σ = −15.4090. In the left of Figure 7, we have depicted
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the two solutions for f . We can see they are quite different when y goes to 1. In the right of Figure 7,

we numerically calculate zf for f(y) = 1− yα + Cyζ sin(−σ log(y)). We can see its numerical value is

almost 1/2 and the discrepancy is due to limited computational accuracy.

Figure 7: Non-unique calibrated functions for z(y) = 1/2.
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By letting X = f(U), we get πX(ε) = 2 for all ε ∈ (0, 1] and such X does not follow the uniform

distribution.

4.5 A numerical method

In general, it is hard to get an explicit solution to (4). Here we present a numerical method to

solve (4). Let us introduce the following process.

1. Let a0 = 1, a1 = a, ...,an = u−1 (an−1).

2. For a ∈ (0, 1), let ξ be the solution to (1− ξ)
1
ξ = a. Let

f0(x) =


1

ξ

(
x−ξ − 1

)
, ξ ̸= 0,

− log(x), ξ = 0,

(6)

on [a, 1].

3. We can solve the following ODE on [a2, a1]:

f ′
1 (w) +

u′ (w)

u (w)
f1 (w) =

u′ (w)

u (w)
f0 (u (w)) , w ∈ [a2, a1] .

4. Now we can repeat step 3 by induction on [an+1, an] for n > 1 by solving

f ′
n (w) +

u′ (w)

u (w)
fn (w) =

u′ (w)

u (w)
fn−1 (u (w)) , w ∈ [an+1, an] .
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5. In general, the solution for differential equation dy
dx + P (x)y = Q(x) is

y = e−
∫ x P (λ) dλ

[∫ x

e
∫ λ P (ε)dεQ(λ)dλ+ C

]
.

So, we get the following solution for fn:

fn (w) = e
∫ an
w

u′(λ)
u(λ)

dλ

[
fn−1(an)−

∫ an

w

e−
∫ an
λ

u′(ε)
u(ε)

dεu
′(λ)

u(λ)
fn−1 (u (λ)) dλ

]
, w ∈ [an+1, an].

6. Finally, let f = fn on [an+1, an].

Note that since we start with a strictly decreasing function, then from equation (4) we have

f ′(w) =
u′ (w)

u (w)
(f (u(w))− f (w)) < 0,

so f remains strictly decreasing.

The solution produced by the numerical method heavily relies on f0. The equation (4) does

not have a unique solution, but the solution from the above process is unique. We set f0 as (6) by

assuming z can be extended from (0, 1] to R+ and set z(y) = a for all y > 1. We use this assumption

for simplification as we can know that (6) satisfies (4) for a constant z from Section 4.4. This choice of

f0 is the same as the choice of k(ε) in the two-point calibration problem, and this reflects our subjective

view of the importance of the Pareto distribution in risk management. Especially, when z(y) = c for

some constant c, we have u(x) = x/c. Therefore, (5) gives

fn(w) =
an
w

[
fn−1(an)−

∫ an

w

1

an
fn−1

(
λ

c

)
dλ

]
.

If we set f0 as (6), we can have f1 also in the form of (6). Then, it is obvious that fn is also in the

form of (6). Therefore, the numerical method gives the simplest power function or logarithm function

when z(y) is a constant on (0, 1] as Table 2, which leads to the generalized Pareto distribution for X.

4.6 Numerical calibrated quantile function

Now let us explore the method in Section 4.5 with simulation. Here we present the results for a

few cases. In Figures 8 to 11, we compare the solution from the numerical method with the standard

formula in Table 2 in the left panel, and compare
∫ y

0
f(s)ds with yf(z(y)y) to validate the equation

(3) in the right panel.

We first try some examples where z is constant as shown in Table 2, i.e. z(x) = 1/2 (Figure 8),

z(x) = 1/e (Figure 9) and z(x) = 0.910 (Figure 10). For Figure 8 to 10, we can see that the numerical

method provides exactly the same function f as Table 2.
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In Figure 11, we check the case z(x) = log (x/(1− e−x)) /x. The function f(x) = e−x satisfies

(3). We can see that the solution from the numerical method is close to a function of the form

f(x) = λe−x + b, which is known to satisfy the integral equation.

Figure 8: Calibrated function and validation for z(x) = 1/2
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Figure 9: Calibrated function and validation for z(x) = 1/e
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5 Technical properties of the PELVE

We now take a turn to study several additional properties of PELVE. In particular, we will obtain

results on the monotonicity and convergence of the dual PELVE as well as the PELVE.

5.1 Basic properties of dual PELVE

The following proposition that shows the PELVE and dual PELVE share some basic properties

such as monotonicity (i), location-scale invariance (ii) and shape relevance (iii)-(iv) below.
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Figure 10: Calibrated function and validation for z(x) = 0.910
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Figure 11: Calibrated function and validation for z(x) = log (x/(1− e−x)) /x
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Proposition 4. Suppose the quantile function of X satisfies Assumption 1 and ε ∈ (0, 1].

(i) ΠX(ε) is increasing (decreasing) in ε if and only if so is πX(ε).

(ii) For all λ > 0 and a ∈ R, πλX+a(ε) = πX(ε).

(iii) πf(X)(ε) ⩽ πX(ε) for all strictly increasing concave functions: f : R → R with f(X) ∈ X .

(iv) πg(X)(ε) ⩾ πX(ε) for all strictly increasing convex functions: g : R → R with g(X) ∈ X .

The statements (ii)-(iv) are parallel to the corresponding statements in Theorem 1 of Li and Wang

(2022) on PELVE. The proof of Proposition 4 is put in Appendix C. Proposition 4 allows us to study

the monotonicity and convergence of the PELVE by analyzing the corresponding properties of the

dual PELVE, which is more convenient in many cases. In the following sections, we focus on finding

the conditions which make the dual PELVE monotone and convergent at 0. By Proposition 4, those

conditions can also apply to the PELVE.
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5.2 Non-monotone and non-convergent examples

In this section, we study the monotonicity and convergence of dual PELVE. For monotonicity, we

have shown some well-known distributions such as normal distribution, t-distribution and lognormal

distribution have monotone PELVE curves in Example 3. However, the PELVE is not monotone for

all X ∈ X . Below we provide an example.

Example 4 (Non-monotone PELVE). Let us consider the following density function g on [−2, 2],

g (x) =
1

2

(
(x+ 2)1{x∈[−2,−1]} − x1{x∈(−1,0]} + x1{x∈(0,1]} + (2− x)1{x∈(1,2]}

)
.

For X with density function g, Figure 12 presents the value of ΠX(ε) for ε ∈ (0, 0.5). As one can see,

the PELVE is not necessarily decreasing, and so is the dual PELVE.

Figure 12: PELVE for X with density g
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For the convergence, it is clear that πX(ε) is continuous in (0, 1) forX ∈ X . Therefore, limε→p πX(ε)

exists for all p ∈ (0, 1). However, both ΠX(ε) and πX(ε) are not well defined at ε = 0. If limε→0 πX(ε)

exists, we can define πX(0) as the limit, and ΠX(0) similarly. However, the following example shows

that the limit does not exist for some X ∈ X .

Example 5 (No limit at 0). We can construct a random variable X ∈ X such that limε→0 πX(ε) does

not exist from the integral equation (3) in Section 4.2. Equivalently, we will find a continuous and

strictly decreasing function f ∈ C such that limy→0 zf (y) does not exist. Let c be the Cantor ternary

function on [0, 1]. Note that x 7→ c(x) is continuous and increasing on (0, 1) and c(x/3) = c(x)/2. Let

22



f(x) = −c(x)− xlog 2/ log 3. It is clear that f ∈ C and f(x/3) = f(x)/2. For each y ∈ (0, 1], we have

yf (zf (y)y) =

∫ y

0

f(x)dx

= 2

∫ y

0

f

(
1

3
x

)
dx = 6

∫ 1
3y

0

f(x)dx = 2yf

(
1

3
yzf

(
1

3
y

))
= yf

(
yzf

(
1

3
y

))
.

Since f is strictly decreasing, zf (y) = zf (y/3) for y ∈ (0, 1]. It means that zf (y) is a constant

on (0, 1] if limy→0 zf (y) exists. Now, let us look at two particular points of zf (y). We can show that

zf (1) ̸= zf (4/9). Let z = (log 2/ log 3+1)−(log 3/ log 2). Then, we have 1/3 < z ≈ 0.46 < 1/2. For y = 1,

we have
∫ 1

0
c(s)ds = c(z) = 1/2 and

∫ c

0
slog 2/ log 3ds = zlog 2/ log 3. Therefore, we get zf (1) = z < 1/2.

For y = 4/9, we have

f

(
4

9
zf

(
4

9

))
=

9

4

∫ 4/9

0

f(s)ds

= −9

4

(
1

log 2
log 3 + 1

(
4

9

) log 2
log 3+1

+
1

12
+

1

2

(
4

9
− 1

3

))
< −0.68 < f

(
2

9

)
≈ −0.64.

As f is strictly decreasing, we have (4/9)zf (4/9) > 2/9 which implies zf (4/9) > 1/2 > zf (1). As a

result, limy→0 zf (y) does not exist. Therefore, we have a continuous and strictly decreasing f such

that limy→0 zf (y) does not exist.

5.3 Sufficient condition for monotonicity and convergence

In risk management applications, for a random variable X modeling a random loss, the behavior

of its tail is the most important. Let F [p,1] be the upper p-tail distribution of F (see e.g., Liu and

Wang (2021)), namely

F [p,1](x) =
(F (x)− p)+

1− p
, x ∈ R.

We will see that the dual PELVE of F [p,1] is a part of the dual PELVE of F .

Lemma 2. Let F be the distribution function of X with quantile function satisfying Assumption 1.

For p ∈ (0, 1) and X ′ ∼ F [p,1], it holds

πX′(ε) = πX(ε(1− p)).

Proof. It is clear that VaRε(X
′) = VaRε(1−p)(X) and ESε(X

′) = ESε(1−p)(X). Therefore,

πX′(ε) = inf{d ⩾ 1 : ESε(X
′) ⩽ VaRε/d(X

′)}

= inf{d ⩾ 1 : ESε(1−p)(X
′) ⩽ VaRε(1−p)/d(X

′)} = πX(ε(1− p)).
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Thus, we have the desired result.

The tail distribution can provide a condition to check whether the dual PELVE is decreasing.

Proposition 5. Let F be the distribution function of X with quantile function satisfying Assumption

1. If x 7→ F−1
(
(1− p)F (x) + p

)
is convex (concave) for all p ∈ (0, 1), then πX and ΠX are decreasing

(increasing).

Proof. For any p ∈ (0, 1), let X ′ ∼ F [p,1]. By Lemma 2, we have πX′(ε) = πX(ε(1− p)). Furthermore,

we have

(
F [p,1]

)−1

(t) = F−1 ((1− p)t+ p) = F−1
(
(1− p)F

(
F−1(t)

)
+ p
)
, t ∈ [0, 1].

Let U ∼ U(0, 1), X = F−1(U) and X ′ = (F [p,1])−1(U).

We assume that x 7→ F−1
(
(1− p)F (x) + p

)
is a convex function on (ess-inf(X), ess-sup(X)) first.

Let f : R → R be a strictly increasing convex function such that f(x) = F−1((1 − p)F (x) + p) for

x ∈ (ess-inf(X), ess-sup(X)). Then, we have X ′ = f(X). By Proposition 4, we get πX′(ε) ⩾ πX(ε). As

πX′(ε) = πX(ε(1 − p)), we have πX(ε(1 − p)) ⩾ πX(ε) for all p ∈ (0, 1). Thus, πX is decreasing. By

Proposition 4, we have ΠX is also decreasing.

On the other hand, if x 7→ F−1
(
(1− p)F (x) + p

)
is concave, we have πX(ε(1− p)) ⩽ πX(ε) for all

p ∈ (0, 1) and πX is increasing. So is ΠX .

The condition x 7→ F−1
(
(1− p)F (x)+ p

)
is convex (concave) for all p ∈ (0, 1) is generally hard to

check. Intuitively, this condition means that F [p,1] has a less heavy tail compared to F . We can further

simplify this condition by using the hazard rate function. For X ∈ X with distribution function F and

density function f , let S = 1 − F be the survival function and η = f/S be the hazard rate function.

As F is continuous and strictly increasing, S is continuous and strictly decreasing.

Theorem 3. For X with quantile function satisfying Assumption 1, let η be the hazard rate function

of X. If 1/η is second-order differentiable and convex (concave), then πX and ΠX are decreasing

(increasing).

The proof of Theorem 3 is provided in Appendix C.

Example 6. For the normal distribution, we can give a short proof of the convexity of 1/η. Let S

be the survival function of the standard normal distribution and f its density. Let I (x) = 1/η (x) =

S(x)/f(x) = exp
(
x2/2

) ∫ −x

−∞ exp
(
−s2/2

)
ds. One can easily see that

I ′ (x) = xI (x)− 1 (7)
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which gives I ′′ (x) = xI ′ (x) + I (x). This with (7) implies that

I ′′ (x) =
(
1 + x2

)
I (x)− x. (8)

First, consider the negative line i.e., x < 0. In this case (7) and (8) imply I ′(x) = xI(x) − 1 < 0,

and I ′′(x) = (1 + x2)I(x) + (−x) > 0. The implication of the two relations is that I is a convex and

decreasing function on negative line. Now we consider the case x > 0. In this case, let i (x) = I ′ (−x).

From what we have proved it is clear that i is an increasing function on x > 0. On the other hand, we

have I (x) + I (−x) = 1/f (x) =
√
2π exp

(
x2/2

)
. This combined with (7) gives us

I ′ (x) = x (I (x) + I (−x)) + i (x) = x
√
2π exp

(
x2/2

)
+ i (x) , x > 0.

This means I ′ is an increasing function on x > 0 as it is a summation of two other increasing functions,

so I is convex on the positive line as well.

Figure 13 presents the curve 1/η for the generalized Pareto distribution, the Normal distribution,

the t-distribution and the Lognormal distribution. For distributions GPD(1/2), N(0, 1) and t(2), we

can see that the curves 1/η are convex, and this coincides with decreasing PELVE shown in Example 2.

For the Lognormal distribution, the shape of 1/η depends on σ. As shown in Example 2, the PELVE

for LN(σ) is visibly decreasing for σ2 = 0.04 and increasing for σ = 1. Corresponding to the above

observations, we see that 1/η is convex for σ2 = 0.04 and concave for σ2 = 1.

Figure 13: 1/η for GPD(1/2), N(0, 1), t(2), LN(0, 2) and LN(1) in blue curves; in the right panel, the
red curve is linear
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Corollary 1. If the hazard rate of a random variable X is second-order differentiable and concave,

then πX and ΠX are decreasing.
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Proof. Just note that if η is concave, then ηη′′ is non-positive. It follows that

(
1

η

)′′

=

(
− η′

η2

)′

=
2 (η′)

2 − ηη′′

η3
⩾ 0.

Thus, 1/η is convex, and the desired statement follows from Theorem 3.

The corollary above is a result of the fact that the concavity of η implies convexity of 1/η.

Therefore, concave η always leads to decreasing PELVE. For example, the Gamma distribution G(α, λ)

with density f(x) = λαtα−1e−λt/Γ(α) has concave hazard rate function when α > 1. Furthermore, by

Theorem 3, we can easily find more well-known distributions that have decreasing πX .

As the tail distribution determines πX around 0, we can focus on the tail distribution to discuss

the convergence of πX at 0. Note that if the survival distribution function is regularly varying, then its

tail parameter one-to-one corresponds to the limit of ΠX at 0 as shown by Theorem 3 of Li and Wang

(2022). Hence, the limit of ΠX , if it exists, can be useful as a measure of tail heaviness, and it is well

defined even for distributions that do not have a heavy tail. By the monotone convergence theorem,

we have limε→0 πX(ε) exists if πX is monotone. The limit may be finite or infinite.

Corollary 2. For X with quantile function satisfying Assumption 1, let η be the hazard rate of X. If

1/η(x) is second-order differentiable and convex (concave) in
(
F−1(δ), ess-sup(X)

)
for some δ ∈ (0, 1),

then limε→0 πX(ε) exists. In particular, this is true if η is second-order differentiable and concave on(
F−1(δ), ess-sup(X)

)
.

Proof. Let X ′ ∼ F [δ,1]. Then, the survival function for X ′ is SX′(x) = S(x)/(1 − p) for x ⩾ F−1(δ).

The density function is fX′(x) = f(x)/(1 − p) for x ⩾ F−1(δ). Therefore, the hazard rate function is

ηX′(x) = f(x)/S(x) = η(x) for x ⩾ F−1(δ).

As 1/η(x) is convex (concave) when x > F−1(δ), we have 1/ηX′(x) is convex (concave). By

Theorem 3, we have πX′(ε) is decreasing (increasing) on (0, 1). As a result, we have πX(ε) is decreasing

(increasing) on (0, δ) and limε→0 πX(ε) exists.

By Corollary 1, if η is concave on (F−1(δ), ess-sup(X)), 1/η is convex on (F−1(δ), ess-sup(X))

and limε→0 πX(ε) also exists.

Example 7. If limε→0 πX(ε) is a constant, we have limε→0 Πε(X) = limε→0 πX(ε) as πX(ΠX(ε)ε) =

ΠX(ε). We give the numerical values of ΠX(ε) at very small probability levels ε for normal, t, and log-

normal distributions. These distributions do not have a constant PELVE curve, and using Corollary 2

we can check that their PELVE have limits. As we can see from Table 3, PELVE can still distinguish

the heaviness of the tail even when ε is very small. The heavier tailed distributions report a higher

PELVE value. For the normal distribution and the log-normal distribution with σ = 0.2, the value of

PELVE is close to e ≈ 2.7183 as ε ↓ 0. From the numerical values, it is unclear whether ΠX(ε) → e
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for all log-normal distributions, but there is no practical relevance to compute ΠX(ε) for ε < 10−11 in

applications.

Table 3: Values of ΠX(ε)

Distribution N LN(1) LN(0.5) LN(0.2) t(2) t(3)

ε = 10−10 2.6884 2.9167 2.7944 2.7290 4.0000 3.3750

ε = 10−11 2.6909 2.9077 2.7920 2.7287 4.0000 3.3750

6 Applications to datasets used in insurance

In this section, we apply the PEVLE calibration techniques to datasets used in insurance to show

how to use the calibrated distribution in estimating risk measure values and simulation.

6.1 Dental expenditure data

In this example, we apply the calibration model to the 6494 complete household component’s

total dental expenditure data from Medical Expenditure Panel Survey for 2020. An earlier version of

the same dataset is used by Behan et al. (2010) to study the relationship between worker absenteeism

and overweight or obesity. The main purpose of this experiment is to construct tractable models, with

continuous and simple quantile functions, which have similar risk measure values as the original dataset,

and the same PELVE at certain levels. We present in Figure 14 two quantile functions calibrated from

ΠX(ε1) and ΠX(ε2), with (ε1, ε2) = (0.01, 0.05) and (ε1, ε2) = (0.05, 0.1), respectively. The two

calibrated quantile functions are scaled up according to the empirical VaRε1(X) and VaRε2(X). By

Theorem 1, we can calibrate the quantile functions from Case 4 when (ε1, ε2) = (0.01, 0.05), and from

Case 5 when (ε1, ε2) = (0.05, 0.1). As mentioned before, for (ε1, ε2) = (0.05, 0.1), we set the calibrated

quantile function in (0, c1ε1) as the Pareto quantile function. Hence, there is no flat part in the two

calibrated quantile functions shown in Figure 14. As we can see, both the two calibrated quantile

functions fit the empirical quantile functions well. The calibrated quantile function can be regarded as

a special parameterized model for tail distribution, which can fit the value of VaR and ES at specified

levels. With the parameterized calibrated model, we can estimate the value of tail risk measures (see

Liu and Wang (2021)) such as ES, VaR, and Range-VaR (RVaR), amongst others. In Tables 4 and 5,

we compute the values of ES and RVaR for the calibrated model and compare them with empirical ES

and RVaR values, respectively, where the risk measure RVaR is defined as

RVaRα,β(X) =
1

β − α

∫ α

β

VaRγ(X)dγ
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for 0 ⩽ α < β < 1; see Cont et al. (2010) and Embrechts et al. (2018). As we scale the calibrated quantile

function to empirical VaRε1(X) and VaRε2(X), the calibrated ES and empirical ES are identical at

levels ε1ΠX(ε1) and ε2ΠX(ε2) by the definition of PELVE. For other probability levels, the calibrated

ES and RVaR in Tables 4 and 5 are close to their empirical counterparts. When (ε1, ε2) = (0.01, 0.05),

it may only be useful to compute calibrated ESp(X) for p < 0.05ΠX(0.05) = 0.11591 because the

calibrated quantile function is arbitrary beyond the level 0.11591. If we need to estimate ES or RVaR

for a larger probability level, we can choose a higher ε2 as long as E[X] ⩽ VaRε2(X) is satisfied. For

this dataset, the highest ε2 we can use is 0.1983.

Using the methods in Section 3, for quantile levels between (0, ε1), the distribution calibrated

from one point (ε1, c1) is the same as the one calibrated from two points (ε1, c1) and (ε2, c2). Hence,

the results for ESp of the one-point calibrated function are also shown in Tables 4 and 5 in the cells

p ⩽ ε1.

Figure 14: Empirical and calibrated VaRε for the dental expenditure data
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Table 4: Empirical ES and calibrated ES for the dental expenditure data

p 0.01 0.05 0.1 0.2 0.3

Empirical ESp 10073.1 5361.7 3624.8 2317.9 1696.7

Calibrated ESp from (ε1, ε2) = (0.01, 0.05) 11703.9 5357.7 3759.1 - -

Calibrated ESp from (ε1, ε2) = (0.05, 0.1) 10878.1 5439.6 3711.3 2293.7 1696.4
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Table 5: Empirical RVaR and calibrated RVaR for the dental expenditure data

(α, β) (0.01, 0.02) (0.02, 0.05) (0.05, 0.1)

Empirical RVaRα,β 5748.5 3662.4 1887.9

Calibrated RVaRα,β from (ε1, ε2) = (0.01, 0.05) 5003.7 3360.2 2160.6

Calibrated RVaRα,β from (ε1, ε2) = (0.05, 0.1) 5634.6 3561.8 1983.1

6.2 Hospital costs data

In this example, we apply the calibration process to the Hospital Costs data of Frees (2009) which

were originally from the Nationwide Inpatient Sample of the Healthcare Cost and Utilization Project

(NIS-HCUP). The data contains 500 hospital costs observations with 244 males and 256 females which

can be regarded as the losses of the health insurance policies. Using the calibration model of the

two-point constraint problem, we calibrate quantile functions for females and males from PELVE at

probability levels ε1 = 0.05 and ε2 = 0.1, which are shown in Figure 15. Except for estimating the

risk measure, the calibrated distribution is useful in simulation. Assume the insurance company wants

to know the top 10% hospital costs; that is X|X > VaR0.1(X) where X is the hospital costs. There

are only 24 available data for males and 25 available data for females, which would be not enough for

making statistically solid decisions. To generate more pseudo-data points, we can simulate data from

the calibrated distribution; that is, we simulate data from F [p,1] where F is the calibrated distribution

in Figure 15. Taking p = 0.9, we have F [p,1](t) = VaR(1−p)(1−t)(X) with VaRt(X) from Figure 15. We

simulate 1000 data from the calibrated distributions based on PELVE at ε1 = 0.05 and ε2 = 0.1. In

Figure 16, we present two QQ plots of simulated data against empirical data for females and males

respectively. As we can see, the simulated data has a similar distribution as the empirical data. Those

simulated pseudo-data points can be used for estimating risk measures or making other decisions. For

example, the simulated hospital cost can be used to design health insurance contrasts or set the premium

in complex systems, where sometimes methods based on simulated data are more convenient to work

with than methods relying on distribution functions. This may be seen as an alternative, smoothed,

version of bootstrap; recall that the classic bootstrap sample can only take the values represented in

the dataset. Furthermore, we compare the simulated data of hospital costs for females and males in

Figure 17, which shows that the distribution of the hospital costs for females has a heavier tail than

that for males.
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Figure 15: Empirical and calibrated VaRε for the hospital costs data

7 Conclusion

In this paper, we offer several contributions to the calibration problem and properties of the

PELVE. The calibration problem concerns, with some given values from a PELVE curve, how one can

build a distribution that has this PELVE. We solve a few settings of calibration based on a one-point

constraint, a two-point constraint, or the entire curve constraint. In particular, the calibration for a

given PELVE curve involves solving an integral equation
∫ y

0
f (s) ds = yf (z (y) y) for a given function

z, and this requires some advanced analysis and a numerical method in differential equations. For

the case that z is a constant curve, we can identify all solutions, which are surprisingly complicated.

In addition, we see that if πX is a constant larger than e, which is observed from typical values in

financial return data (Li and Wang (2022)), X share the same tail behavior with the corresponding

Pareto solution. We also applied our calibration techniques to two datasets used in insurance.

On the technical side, we study whether the PELVE is monotone and whether it converges at 0.

We show that the monotonicity of the PELVE is associated with the shape of the hazard rate. If the

inverse of the hazard rate is convex (concave), the PELVE is decreasing (increasing). The monotonicity

at the tail part of the PELVE leads to conditions to check the convergence of the PELVE at 0. If the

inverse of the hazard rate is convex (concave) at the tail of the distribution, the limit of the PELVE

at 0 exists.

There are several open questions related to PELVE that we still do not fully understand. One

particular such question is whether the tail behavior, e.g., tail index, of a distribution is completely

determined by its PELVE. We have seen that this holds true in the case of a constant PELVE (see

30



0 0.5 1 1.5 2 2.5

Calibrated quantile 10
5

0

0.5

1

1.5

2

2.5

E
m

p
ir
ic

a
l 
q

u
a

n
ti
le

10
5 Female

(a) Hospital costs for female

0.5 1 1.5 2 2.5 3 3.5 4

Calibrated quantile 10
4

0.5

1

1.5

2

2.5

3

3.5

4

4.5

E
m

p
ir
ic

a
l 
q

u
a

n
ti
le

10
4 Male

(b) Hospital costs for male

Figure 16: QQ plot: simulated data VS empirical data

Theorem 2), but we do not have a general conclusion. In the case of regularly varying survival functions,

Li and Wang (2022, Theorem 3) showed that the limit of PELVE determines its tail parameter, but

it is unclear whether this can be generalized to other distributions. Another challenging task is, for

a specified curve π on [0, 1], to determine whether there exists a model X with πX = π. The case

of n-point constraints for large n may require a new design of verification algorithms. This question

concerns the compatibility of given information with statistical models, which has been studied, in

other applications of risk management, by Embrechts et al. (2002, 2016) and Krause et al. (2018).
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Figure 17: QQ plot of simulated data of hospital costs: female VS male
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A Omitted proofs in Section 3

Proof of Lemma 1. As E[X] ⩽ VaRε2(X) and ε1 < ε2, E[X] ⩽ VaRε2(X) ⩽ VaRε1(X). By Proposition

1 in Li and Wang (2022), ΠX(ε1) < ∞ and ΠX(ε2) < ∞.
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For any ε ∈ (0, 1) satisfying E[X] ⩽ VaRε(X),

εΠX(ε) = ε inf{c ∈ [1, 1/ε] : EScε(X) ⩽ VaRε(X)}

= inf{εc ∈ [ε, 1] : EScε(X) ⩽ VaRε(X)}

= inf{k ∈ [ε, 1] : ESk(X) ⩽ VaRε(X)}.

Let A(ε) = {k ∈ [ε, 1] : ESk(X) ⩽ VaRε(X)}. For any k ∈ A(ε2), we have 1 ⩾ k ⩾ ε2 > ε1 and

ESk(X) ⩽ VaRε2(X) ⩽ VaRε1(X). Hence, k ∈ A(ε1) and this gives A(ε2) ⊆ A(ε1). Therefore,

ε2ΠX(ε2) = inf A(ε2) ⩾ inf A(ε1) = ε1ΠX(ε1).

Proof of Theorem 1. We will check the equivalent condition (2) between VaR and ES. Note that if

t 7→ VaRt(X) is a constant on (0, ε), then ΠX(ε) = 1. If t 7→ VaRt(X) is not a constant on (0, ε), then

ΠX(ε) is the unique solution that satisfies ESεΠX(ε)(X) = VaRε(X).

(i) Case 1, c2 = 1. It is clear that VaRt(X) is a constant for t ∈ (0, c2ε2] and (2) is satisfied. Hence,

ΠX(ε2) = 1. Moreover, VaRt(X) is also a constant for t ∈ (0, c1ε1], which implies ΠX(ε1) = 1.

(ii) Case 2, c1 = 1 and 1 < c2 ⩽ 1/ε2. For t ∈ (0, ε1), VaRt(X) = Gz(t) is a constant for t ∈ (0, c1ε1).

Hence, ΠX(ε1) = 1. Next, we check whether ESc2ε2(X) = VaRε2(X). The value of ESc2ε2(X) is

ESc2ε2(X)

=
1

c2ε2

(∫ ε1

0

k̂dε+

∫ ε2

ε1

(a1ε+ b1)dε+

∫ c2ε2

ε2

(a2ε+ b2)dε

)
=

1

c2ε2

(
ε1k̂ +

1

2
a1(ε

2
2 − ε21) + b1(ε2 − ε1) +

1

2
a2(c

2
2ε

2
2 − ε22) + b2(c2ε2 − ε2)

)
=

1

c2ε2

(
1

2
a1(ε2 − ε1)

2 + k̂ε2 +
1

2
a2(c2ε2 − ε2)

2 + k̃(c2ε2 − ε2)

)
=

1

c2ε2

(
1

2
(k̃ − k̂)(ε2 − ε1) + k̂ε2 +

1

2
(k̃ − k̂)(ε1 + ε2) + k̃(c2ε2 − ε2)

)
= k̃

The value of VaRε2(X) is a2ε2 + b2 = k̃. Thus, (2) is satisfied. As VaRt(X) is not a constant for

t ∈ (0, c2ε2), we have ΠX(ε2) = c2.

(iii) Case 3, 1 < c1 ⩽ 1/ε1 and c2 = c1ε1
ε2

. In this case, we have

VaRε1(X) = Gz(ε1) = k(ε1) = aε2 + b = Gz(ε2) = VaRε2(X)

and ESc1ε1(X) = ESc2ε2(X) as c1ε1 = c2ε2. Thus, we only need to check whether ESc2ε2(X) =
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VaRε2(X). The value of ESc2ε2(X) is

ESc2ε2(X) =
1

c2ε2

(∫ ε1

0

k(ε)dε+

∫ ε2

ε1

k(ε1)dε+

∫ c2ε2

ε2

aε+ bdε

)
=

1

c2ε2

(
k + k(ε1)(ε2 − ε1) +

1

2
a(c22ε

2
2 − ε22) + (k(ε1)− aε2)(c2ε2 − ε2)

)
=

1

c2ε2

(
k + k(ε1)(c2ε2 − ε1) +

1

2
a(c2ε2 − ε2)

2

)
=

1

c2ε2
(k + k(ε1)(c2ε2 − ε1) + k(ε1)ε1 − k) = k(ε1).

The value of VaRε2(X) is also k(ε1). Hence, (2) is satisfied and ΠX(ε1) = c1, ΠX(ε2) = c2

because t 7→ VaRt(X) is not a constant on (0, ε1).

(iv) Case 4, 1 < c1 ⩽ ε2/ε1 and 1 < c2 ⩽ 1/ε2. The first equivalent condition of (2) for VaRε1(X) and

ESc1ε1(X) is satisfied because VaRt(X) = k(t) is the quantile function for GPD(ξ) with PELVE

c1 and t ∈ (0, c1ε1). Hence, we have ΠX(ε1) = c1. Moreover, ESc1ε1(X) = VaRε1(X) = k(ε1).

We choose a1 = k′(c1ε1) and b1 such that a1c1ε1 + b1 = k(c1ε1). For the equivalent condition

between ESc2ε2(X) and VaRε2(X), we can verify

ESc2ε2(X) =
1

c2ε2

(∫ c1ε1

0

k(ε)dε+

∫ ε2

c1ε1

a1ε+ b1dε+

∫ c2ε2

ε2

(a2ε+ b2)dε

)
=

1

c2ε2

(
c1ε1k(ε1) +

1

2
a1(ε

2
2 − c21ε

2
1) + b1(ε2 − c1ε1) +

1

2
a2
(
c22ε

2
2 − ε22

)
+ b2 (c2ε2 − ε2)

)
=

1

c2ε2

(
c1ε1k(ε1) +

1

2
a1(2c2ε

2
2 − ε22 − c21ε

2
1) + b1(c2ε2 − c1ε1) +

1

2
a2 (c2ε2 − ε2)

2

)
=

1

c2ε2

(
a1c2ε

2
2 + b1c2ε2

)
= a1ε2 + b1 = VaRε2(X).

Thus, (2) is satisfied and we have ΠX(ε2) = c2.

(v) Case 5, ε2/ε1 < c1 ⩽ 1/ε1 and c1ε1
ε2

< c2 ⩽ 1/ε2. The equality between VaRε1(X) and ESc1ε1(X)

can be checked by

ESc1ε1(X) =
1

c1ε1

(∫ ε1

0

k(ε)dε+

∫ ε2

ε1

(a1ε+ b1)dε+ (a1ε2 + b1)(c1ε1 − ε2)

)
=

1

c1ε1

(
k +

1

2
a1(ε

2
2 − ε21) + (k(ε1)− a1ε1)(ε2 − ε1) + (a1ε2 + b1)(c1ε1 − ε2)

)
=

1

c1ε1
(k + a1(ε2 − ε1)(c1ε1 − 1/2(ε2 + ε1)) + k(ε1)(c1ε1 − ε1))

=
1

c1ε1
(k + k(ε1)ε1 − k + k(ε1)(c1ε1 − ε1)) = k(ε1) = Gz(ε1) = VaRε1(X).
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The equality between VaRε2(X) and ESc2ε2(X) can be checked by

ESc2ε2(X) =
1

c2ε2

(∫ c1ε1

0

k(ε)dε+

∫ c2ε2

c1ε1

(a2ε+ b2)dε

)
=

1

c2ε2

(
c1ε1k(ε1) +

1

2
a2(c

2
2ε

2
2 − c21ε

2
1) + b2(c2ε2 − c1ε1)

)
=

1

c2ε2

(
c1ε1k(ε1) +

1

2
a2(c2ε2 − c1ε1)

2 + (a1ε2 + b1)(c2ε2 − c1ε1)

)
=

1

c2ε2
(c1ε1k(ε1) + c1ε1(a1ε2 + b1 − k(ε1)) + (a1ε2 + b1)(c2ε2 − c1ε1))

= a1ε2 + b1 = Gz(ε2) = VaRε2(X)

Hence, (2) is satisfied, and ΠX(ε1) = c1 and ΠX(ε2) = c2.

Therefore, it is checked that X satisfies ΠX(ε1) = c1 and ΠX(ε2) = c2 for all five cases.

The following propositions address the issue discussed in Remark 1 by showing that the boundary

cases of (ε1, c1, ε2, c2) cannot be achieved by strictly decreasing quantile functions, and hence our

construction of quantiles with a flat region in Figure 5 are needed.

Proposition 6. For any X ∈ L1, let ε1, ε2 ∈ (0, 1) be such that E[X] ⩽ VaRε2(X) and ε1 < ε2. Then,

ΠX(ε2) = max {1,ΠX(ε1)ε1/ε2} if and only if VaRε1(X) = VaRε2(X).

Proof. Using the same logic as in Lemma 1, we have that ΠX(ε1) and ΠX(ε2) are finite.

We first show the “if” statement. Assume VaRε1(X) = VaRε2(X). As VaRε(X) is decreasing, we

know that VaRε(X) is a constant on [ε1, ε2].

If VaRε(X) = VaRε1(X) for ε ∈ (0, ε1), then VaRε(X) is a constant on (0, ε2]. Therefore, we

can get ΠX(ε1) = ΠX(ε2) = 1. Note that ΠX(ε1)ε1/ε2 = ε1/ε2 < 1. Thus, we obtain ΠX(ε2) =

max {1,ΠX(ε1)ε1/ε2)}.

If there exists ε ∈ (0, ε1) such that VaRε(X) > VaRε1(X), then ESε(X) is strictly decreas-

ing on [ε1, 1]. By the equivalent condition between VaR and ES, VaRε1(X) = VaRε2(X) implies

ESε1ΠX(ε1)(X) = ESε2ΠX(ε2)(X). Thus, ε1ΠX(ε1) = ε2ΠX(ε2). Furthermore, we have

VaRε1ΠX(ε1)(X) < ESε1ΠX(ε1)(X) = VaRε1(X) = VaRε2(X).

Thus, ε1ΠX(ε1) > ε2 and we get ΠX(ε2) = max {1,ΠX(ε1)ε1/ε2}.

Next, we show the “only if” statement. Assume ΠX(ε2) = max {1,ΠX(ε1)ε1/ε2}.

If ΠX(ε2) = 1, then VaRε2(X) = ESε2(X). This implies that VaRε(X) is a constant on (0, ε2],

which gives VaRε1(X) = VaRε2(X).
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If ΠX(ε2) = ΠX(ε1)ε1/ε2, then ε2ΠX(ε2) = ε1ΠX(ε1). Hence, we have

VaRε1(X) = ESε1ΠX(ε1)(X) = ESε2ΠX(ε2)(X) = VaRε2(X).

Thus, we complete the proof.

Proposition 7. For any X ∈ L1, let ε1, ε2 ∈ (0, 1) be such that E[X] ⩽ VaRε2(X) and ε1 < ε2. Let

c1 = ΠX(ε1) and c2 = ΠX(ε2). If VaRε1(X) > VaRε2(X), then

ĉ⩽c2⩽


min

{
1

ε2
,
c1ε1
ε2

(
VaRε1(X)−VaRc1ε1(X)

VaRε2(X)−VaRc1ε1(X)

)}
, VaRc1ε1(X)<VaRε2(X),

1

ε2
, VaRc1ε1(X)⩾VaRε2(X),

where

ĉ = inf

{
t ∈ (1, 1/ε2] :

(tε2 − c1ε1) (VaRε2(X)−VaRtε2(X))

c1ε1 (VaRε1(X)−VaRε2(X))
⩾ 1

}
.

Moreover, ĉ ⩾ max{1, c1ε1/ε2}.

Proof. As E[X] ⩽ VaRε2(X), we have c1 < ∞ and c2 < ∞. By definition, c2 ⩽ 1/ε2. From Lemma 6,

we get c2 > max {1, c1ε1/ε2}. Thus, the value of c2 should be in (max {1, c1ε1/ε2} , 1/ε2].

Note that c1, ε1, c2, ε2 satisfy the equivalent condition (2). We can rewrite (2) as

∫ c1ε1

0

VaRε(X)dε = c1ε1VaRε1(X) and

∫ c2ε2

0

VaRε(X)dε = c2ε2VaRε2(X).

Therefore, we have ∫ c2ε2

c1ε1

VaRε(X)dε = c2ε2VaRε2(X)− c1ε1VaRε1(X).

Furthermore, by the monotonicity of VaR, we have

(c2ε2 − c1ε1)VaRc2ε2(X) ⩽
∫ c2ε2

c1ε1

VaRε(X)dε ⩽ (c2ε2 − c1ε1)VaRc1ε1(X).

The two inequality will provide an upper bound and a lower bound for c2.

An upper bound on c2. Using c2ε2VaRε2(X)−c1ε1VaRε1(X) ⩽ (c2ε2−c1ε1)VaRc1ε1(X), we have

c2ε2 (VaRε2(X)−VaRc1ε1(X)) ⩽ c1ε1 (VaRε1(X)−VaRc1ε1(X)) . (9)

If VaRc1ε1(X) ⩾ VaRε2(X), the left side of (9) is less or equal to 0 and the right side of (9)

is larger or equal to 0 because VaRε1(X) ⩾ VaRc1ε1(X). Therefore, (9) is satisfies for any c2 ∈

(max {1, c1ε1/ε2} , 1/ε2]. The upper bound for c2 is unchanged.
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On the other hand, if VaRc1ε1(X) < VaRε2(X), we have

c2 ⩽
c1ε1
ε2

(
VaRε1(X)−VaRc1ε1(X)

VaRε2(X)−VaRc1ε1(X)

)
.

Thus, an upper bound for c2 is min
{

1
ε2
, c1ε1

ε2

(
VaRε1 (X)−VaRc1ε1 (X)

VaRε2
(X)−VaRc1ε1

(X)

)}
.

A lower bound on c2. It holds that

(c2ε2 − c1ε1)VaRc2ε2(X) ⩽ c2ε2VaRε2(X)− c1ε1VaRε1(X).

Subtracting (c2ε2 − c1ε1)VaRε2(X) from both sides, we get

(c2ε2 − c1ε1) (VaRε2(X)−VaRc2ε2(X)) ⩾ c1ε1 (VaRε1(X)−VaRε2(X)) . (10)

For t ∈ (0, 1/ε2), let

f(t) = (tε2 − c1ε1) (VaRε2(X)−VaRtε2(X)) .

As we can see, f(1) = 0, f(c1ε1/ε2) = 0 and f(t) ⩽ 0 if t ∈ [min{1, c1ε1/ε2},max{1, c1ε1/ε2}]. The f

is increasing in the interval (max{1, c1ε1/ε2}, 1/ε2), decreasing in (0,min{1, c1ε1/ε2}). Hence, by (10),

the lower bound for c2 is

ĉ = inf

{
t ∈ (1, 1/ε2] :

(tε2 − c1ε1) (VaRε2(X)−VaRtε2(X))

c1ε1 (VaRε1(X)−VaRε2(X))
⩾ 1

}
.

As c1ε1 (VaRε1(X)−VaRε2(X)) > 0, we have ĉ ⩾ max{1, c1ε1/ε2}.

B Omitted proofs in Section 4.4

Proof of Theorem 2. By Proposition 3, for any X ∈ X , we can find f ∈ C satisfying (3) such that

zf (y) = 1/πX(y) = c and X = f(U). As z(y) = c is a continuously differentiable function, we know

that all such f is characterized by the advanced differential equation (4). First, we show for any strictly

decreasing solution f to (4) can be represented as

f (y) = C0 + C1y
α +O

(
yζ
)
.

Let us start with (4). If z(y) = c, we need to solve f from

f(y) = f(cy) + cyf ′(cy), y ∈ (0, 1].

Even though f in the first place is considered on (0, 1], given that c < 1, and this final equation, one

38



can expand it to the whole positive line:

f(y) = f(cy) + cyf ′(cy), y > 0.

Next, let x (t) = e−tf (e−t) for t ∈ R and a = − log (c) > 0. This is equivalent to say that f (y) =

x (− log (y)) /y. This changing variable simply gives the following delayed differential equation:

x′ (t) = −e−ax (t− a) , t ∈ R.

Since we have assumed that f is strictly decreasing, i.e., f ′ < 0, we have an extra restriction on x.

Note that

x′ (t) = −e−tf
(
e−t
)
− e−2tf ′ (et) = −x (t)− e−2tf ′ (et) .

Thus, we have f ′ < 0 ⇔ x′ + x > 0. Therefore, we are looking for a solution to the following delay

differential equation (DDE):

x′ (t) = −e−ax (t− a) ,

x′ (t) + x (t) > 0,

t ∈ R. (11)

A standard approach of finding the solutions is to assume that they are in the form of a characteristic

function t 7→ emt. Putting this solution inside the equation, we get

memt = −e−aem(t−a) =⇒ ameam = (−a) e(−a).

This means any solution is given by x (t) = emt where m solves the characteristic equation

l (ma) = l (−a) , (12)

where l (x) = xex. Let b = l(−a). As a > 0, we have b ∈ [−1/e, 0). This equation has one obvious real

solution at m1 = −1. To find m, we need to know about the inverse of l. The inverse of the function

l is known as the Lambert W function and plays an essential role in solving delayed and advanced

differential equations.

From the Lambert W function, we know that l (z) = zez = b has two real solutions when b ∈

(−1/e, 0) and one real solution when b = −1/e. As illustrated by Figure 18, if 0 < c < 1/e, the two

real solutions are z1 = −a < −1 and z2 = m2a > −1; thus, −1 < m2 < 0. If 0 < c < 1/e, the two real

solutions are −1 < z1 = −a < 0 and z2 = m2a < −1; thus, m2 < −1. If c = 1/e, there is only one real

solution z1 = z2 = −1; thus m2 = m1 = −1.
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Figure 18: Lambert W function.

It is important to note that in general an equation like l (z) = zez = b has infinite complex roots.

Let z = θ + iη, and b ∈ [−1/e, 0). In that regard, we have

b = zez = (θ + iη) eθ+iη

= (θ + iη) (cos (η) + i sin (η))

= (θ cos (η)− η sin (η)) + i (θ sin (η) + η cos (η)) .

This implies that θ sin (η) + η cos (η) = 0, and b = eθ (θ cos (η)− η sin (η)), leading to

η = 0, b = θeθ or θ = − η

tan (η)
, b = −

η exp
(
− η

tan(η)

)
sin (η)

.

We plot the curves b = θeθ and

(
−

η exp(− η
tan(η) )

sin(η) ,− η
tan(η)

)
to find out the relation between b and the

real part of the solution in Figure 19. The x-axis is b and the y-axis is θ. The blue curve is associated

with b = θeθ, which is essentially the principle branch of the Lambert W function. For any b, one

can find the real values of the roots by fixing b. For instance, the green dashed line is associated with

b = −0.12. As one can see, the curves intersect this line in infinite negative values. For b ∈ [−1/e, 0),

we can see that the real roots are greater than the real part of the complex roots. For more explanation

of this, see Siewert and Burniston (1973).

Now assume that all the complex solutions for (am) eam = (−a) e(−a) are mk = λk + σki for

k = 1, 2, 3, . . . , where (λ1, σ1) = (−1, 0) and (λ2, σ2) = (m2, 0). Based on the above discussions, we

have

λ1 = −1 > λ2 = m2 > λ3 > λ4 > . . . when c ∈ (1/e, 1),

0 > λ2 = m2 > λ1 = −1 > λ3 > λ4 > . . . when c ∈ (0, 1/e),
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Figure 19: The real part of the Lambert W roots.

and

λ1 = λ2 = −1 > λ3 > λ4 > . . . when c = 1/e.

Let

C =


λ −σ

σ λ

 = λ+ σi | λ, σ ∈ R


be the set of all complex numbers. Then,

xC(t) = exp


λ −σ

σ λ

 t


is a complex solution that solves (11). It is clear that (11) still holds for the linear transform of x(t).

Therefore, for any two 2× 1 vector A and B,

x(t) = A′xC(t)B = eλt (C1 cos(σt) + C2 sin(σt))

is also a solution to (11).

In Bellman and Cooke (1963), it is shown that all complex solutions to (11) can be represented

as follows:

xC (t) =

∞∑
k=1

Cke
mkt.

Putting it in the real-valued context, we have that all real-valued solutions are in the following form:

x (t) = C1e
−t + C2e

m2t +

∞∑
k=3

eλkt (Ck,1 cos (σkt) + Ck,2 sin (σkt)) .
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Now let us check x′ + x > 0. This means that C2, {Ck,1}k⩾3 and {Ck,2}k⩾3 for all t must satisfy

x′ (t) + x (t) = (1 +m2)C2e
m2t

+

∞∑
k=3

eλkt ((λkCk,1 + σkCk,2 + Ck,1) cos (σkt) + (λkCk,2 − σkCk,1 + Ck,2) sin (σkt)) > 0.

As λk < m2 for k ⩾ 3, we have limt→∞ (x′(t) + x(t)) /em2t = (1 +m2)C2. Therefore, we need C2 < 0

if m2 < −1 or C2 > 0 if m2 > −1. That is C2(1 +m2) > 0. Then the solution can be written as

x (t) = C1e
−t + C2e

m2t +O
(
eλ3t

)
.

By a change of variable, we get

f (y) = C1 + C2y
α +O

(
yζ
)
,

where α = − (1 +m2) and ζ = − (1 + λ3). As λ3 < min{−1,m2} and C2(1 + m2) > 0, we have

ζ > max{0, α} and C2α < 0. Also note that since m2 solves (am) eam = (−a) e(−a), by replacing

m2 = −1− α and a = − log (c), we get (α+ 1)−1/α = c.

C Omitted proofs in Section 5

Proof of Proposition 4. Before proving the statements in the proposition, we introduce the following

linking function, for X ∈ X ,

ΓX(ε) = 1− FX(ESε(X)), ε ∈ [0, 1].

As X ∈ X it is easy to check that ΓX satisfies Assumption 1 for any X ∈ X . The domain of ΓX(ε) is

[0, 1] and its range is [0, 1− FX(E[X])].

As ESε(X) = VaRΓX(ε)(X), we have

VaRΓX(ε)(X) = ESε(X) = VaRε/πX(ε)(X) for ε ∈ (0, 1].

Hence we have the simple relationship ΓX(ε) = ε/πX(ε). Therefore, ΠX(ε) = πX

(
Γ−1
X (ε)

)
and πX(ε) =

ΠX(ΓX(ε)). The function ΓX yields an association between a point on the PELVE on (0, 1−FX(E[X])]

and a point on the dual PELVE curve on (0, 1] with the same value. Furthermore, we have πX is

continuous on (0, 1) as πX(ε) = ε/ΓX(ε) and ΓX is continuous.

Next, we show the statements (i)-(iv). The equivalence (i) of monotonicity of ΠX and that of

πX(·) follows from ΠX(ε) = πX

(
Γ−1
X (ε)

)
, πX(ε) = ΠX(ΓX(ε)) and that ΓX is increasing.
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For (ii), (iii) and (iv), we first show that ΓX is location-scale invariant and shape relevant (in the

sense of (13)). Assume that f : R → R is a strictly increasing concave function such that f(X) ∈ X .

By Jensen’s inequality and the dual representation of ESp, we have

ESp (f(X)) ⩽ f (ESp(X))

for all p ∈ (0, 1). This statement can be found in Appendices A.2 in Li and Wang (2022). Therefore,

Γf(X)(ε) = 1− Ff(X) (ESε (f(X)))

⩾ 1− Ff(X) (f (ESε(X))) = 1− FX (ESε(X)) = ΓX(ε).
(13)

Then, we have Γf(X)(ε) ⩾ ΓX(ε) for all strictly increasing concave functions: f : R → R with f(X) ∈ X .

For any strictly increasing convex function g : R → R with g(X) ∈ X , we can take f(x) = g−1(X),

which is a strictly increasing concave function. Therefore, we have Γg(X)(ε) ⩽ ΓX(ε) for all strictly

increasing convex functions g.

For λ > 0 and a ∈ R, we have that f(x) = λX + a is both convex and concave. Therefore,

ΓλX+a(ε) = ΓX(ε) for all ε ∈ [0, 1]. In conclusion, we have the following results for Γ.

(1) For all λ > 0 and a ∈ R, ΓλX+a(ε) = ΓX(ε).

(2) Γf(X)(ε) ⩾ ΓX(ε) for all strictly increasing concave functions: f : R → R with f(X) ∈ X .

(3) Γg(X)(ε) ⩽ ΓX(ε) for all strictly increasing convex functions: g : R → R with g(X) ∈ X .

Then, we have (ii), (iii) and (iv) from πX(ε) = ε/ΓX(ε).

Proof of Theorem 3. The idea is to prove that if 1/η is convex (concave), then x 7→ F−1((1−p)F (x)+p)

is convex (concave) for all p ∈ (0, 1). Then, we can get the desired result by Proposition 5. We will

use the following steps to show this statement.

Step 1. Let s(x) = log (1− F (x)) for x ∈ (ess-inf(X), ess-sup(X)). Then, s is a continuous and

strictly decreasing function and s(x) < 0. Let s−1 be the inverse function of s. Now, we have

F (x) = 1− es(x), x ∈ (ess-inf(X), ess-sup(X))

and

F−1(t) = s−1(log(1− t)), t ∈ (0, 1).
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Therefore,

F−1
(
(1− p)F (x) + p

)
= s−1

(
log(1− (1− p)F (x)− p)

)
= s−1

(
log
(
1− F (x)

)
+ log(1− p)

)
= s−1

(
log
(
es(x)

)
+ log(1− p)

)
= s−1

(
s(x) + log(1− p)

)
.

Let θ = log(1−p). It follows that the statement that x 7→ F−1
(
(1−p)F (x)+p

)
is convex (concave) for

all p ∈ (0, 1) is equivalent to the statement that x 7→ s−1 (s(x) + θ) is convex (concave) for all θ < 0.

Step 2. Let g(x) := −s−1(x). Then, g is strictly increasing. We will show that if 1/η is convex

(concave), log(g′(x)) is convex (concave).

As g(x) = −s−1(x) = −S−1(ex), we have

g′(x) =
ex

f (S−1(ex))
.

Let H(x) := log(g′(x)) = x− log
(
f
(
S−1(ex)

))
. We have

H (log(S(x))) = logS(x)− log f(x) = − log η(x). (14)

Then, taking the derivative on both sides of (14), we get

−H ′( log(S(x)))η(x) = −η′(x)

η(x)

⇐⇒ H ′( log(S(x))) = η′(x)

η2(x)
= − d

dx

(
1

η(x)

)
.

Taking a derivative in both sides again, we get

−H ′′( log(S(x)))η(x) = − d2

dx2

(
1

η(x)

)
.

Then, 1/η is a convex (concave) function means H ′′(x) ⩾ 0 (H ′′(x) ⩽ 0), which gives that log g′(x) is

convex (concave).

Step 3. For θ < 0, let Gθ(x) := s−1(s(x) + θ). We are going to show

lim
z→0

Gθ(x+ z)−Gθ(x)

z
⩽ lim

z→0

Gθ(x
′ + z)−Gθ(x

′)

z
(15)

for all x < x′.

We take z > 0 first. As s is strictly decreasing, s−1 is also strictly decreasing. Then, Gθ is a

continuous and strictly increasing function. As θ < 0, we also have Gθ(x) > x. Take arbitrary x, x′, y
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and z such that x < x′, x < y and z > 0. Let θ = s(y)− s(x). Then, we have Gθ(x) = y. Define

h = Gθ(x+ z)− y, y′ = Gθ(x
′) and h′ = Gθ(x

′ + z)− y′.

By the definition of Gθ, we have s(y+h) = s(x+ z)+ θ, s(y′) = s(x′)+ θ and s(y′+h′) = s(x′+ z)+ θ.

As a result, we have

s(y + h)− s(y) = s(x+ z)− s(x) and s(y′ + h′)− s(y′) = s(x′ + z)− s(x′).

By the mean-value theorem, there exists ζ ∈ (y, y + h), ζ ′ ∈ (y′, y′ + h′), ξ ∈ (x, x + z) and

ξ′ ∈ (x′, x′ + z) such that

s′(ζ)h = s′(ξ)z and s′(ζ ′)h′ = s′(ξ′)z.

Furthermore, x, x′, y and y′ satisfy x < x′ < y′ and x < y < y′. If z is small enough, then h and h′

will also be small enough as Gθ is continuous. Therefore, we have ξ < ξ′ < ζ ′ and ξ < ζ < ζ ′ when z

is small enough.

In Step 2, we have that log g′(x) is convex when 1/η is convex. Therefore, we get

log(g′(a)) + log(g′(b)) ⩾ log(g′(a′)) + log(g′(b′)),

for all a < a′ < b and a < b′ < b, which means

g′(a)g′(b) ⩾ g′(a′)g′(b′).

As g(x) = −s−1(x), we have

1

s′(s−1(a))s′(s−1(b))
⩾

1

s′(s−1(a′))s′(s−1(b′))
.

As s−1(x) is strictly decreasing, it means that

s′(α)s′(β) ⩽ s′(α′)s′(β′)

for α > α′ > β and α > β′ > β. Therefore, we have s′(ξ)s′(ζ ′) ⩽ s′(ξ′)s′(ζ) as ζ ′ > ζ > ξ and

ζ ′ > ξ′ > ξ. That is,

h =
s′(ξ)z

s′(ζ)
⩽

s′(ξ′)z

s′(ζ ′)
= h′.
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On the other hand, h = Gθ(x+ z)−Gθ(x) and h′ = Gθ(x
′ + z)−Gθ(x

′). Therefore,

Gθ(x+ z)−Gθ(x) ⩽ Gθ(x
′ + z)−Gθ(x

′)

when z is small enough. If z < 0, we can also get (15) by an analogous argument.

Hence, the second-order derivative of Gθ is increasing for each θ < 0, which means that x 7→

F−1
(
(1− p)F (x) + p

)
is convex for all p ∈ (0, 1) if 1/η is convex.

An analogous argument yields that x 7→ F−1
(
(1 − p)F (x) + p

)
is concave for all p ∈ (0, 1) when

1/η is concave.
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